metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[[aqua(1,10-phenanthroline- $\kappa^2 N.N'$)manganese(II)]-{ μ -4.4'-[(4carboxybenzyl)nitrilo]dibenzoato- $\kappa^4 O, O': O'', O'''$] monohydrate]

Jin-Song Hu,* Lei Jing, Xiao-Ming Song and Jie He

School of Chemical Engineering, Anhui University of Science and Technology, Huainan Anhui 232001, People's Republic of China Correspondence e-mail: jshu@aust.edu.cn

Received 5 April 2012; accepted 17 April 2012

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.006 Å; R factor = 0.060; wR factor = 0.156; data-to-parameter ratio = 12.8.

The title compound, $\{[Mn(C_{22}H_{15}NO_6)(C_{12}H_8N_2)(H_2O] H_2O_{ln}$, was obtained under solvothermal conditions. The Mn²⁺ cation exhibits a distorted pentagonal-bipyramidal MnN₂O₅ coordination sphere with the water O atom and one of the phenanthroline N atoms in the axial positions. The cation is bridged by the doubly deprotonated 4,4'-[(4-carboxybenzyl)nitrilo]dibenzoate ligand, generating a polymeric chain parallel to [100]. $O-H \cdots O$ hydrogen bonding, as well as $\pi - \pi$ interactions between neighbouring phenanthroline ligands, with centroid–centroid distances of 3.695 (1) Å, lead to the construction of a three-dimensional network.

Related literature

For background to compounds with metal-organic-framework structures (MOFs), see: Corma et al. (2010); Feng et al. (2009); Lin et al. (2010); Ma et al. (2010); Sarma et al. (2011).

Experimental

Crystal data

[Mn(C₂₂H₁₅NO₆)(C₁₂H₈N₂)- $\beta = 107.445 (3)^{\circ}$ $(H_2O] \cdot H_2O$ V = 2978.4 (7) Å³ Z = 4 $M_r = 660.53$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation $\mu = 0.50 \text{ mm}^{-1}$ a = 15.142 (2) Å b = 9.6734 (13) Å T = 273 Kc = 21.313 (3) Å $0.32 \times 0.27 \times 0.23 \text{ mm}$

Data collection

Bruker APEX SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.851, \ T_{\max} = 0.891$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	410 parameters
$wR(F^2) = 0.156$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
5235 reflections	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

14335 measured reflections

 $R_{\rm int} = 0.102$

5235 independent reflections

3488 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Mn1-O1	2.198 (2)	Mn1-N2	2.274 (3)
Mn1-O4 ⁱ	2.210 (2)	Mn1-O2	2.389 (2)
Mn1-O9	2.235 (2)	Mn1-O3 ⁱ	2.461 (3)
Mn1-N1	2.258 (3)		

Symmetry code: (i) x + 1, y, z.

Table 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O8−H8A····O4 ⁱⁱ	0.85	1.96	2.798 (4)	170
$O8-H8B\cdots O11^{iii}$	0.85	2.43	2.872 (5)	113
$O9-H9B\cdots O1^{iv}$	0.85	2.09	2.745 (3)	134
$O9-H9A\cdots O3^{v}$	0.82	2.12	2.824 (3)	144
$O12-H12\cdots O8^{vi}$	0.82	1.81	2.605 (4)	165

Symmetry codes: (ii) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (vi) x - 1, y - 1, z - 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by grants from the Natural Science Foundation of China (No. 21071004) and the Start-up Foundation of Anhui University of Science and Technology (No. 11227).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2618).

References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Corma, A., García, H. & Llabrés i Xamena, F. X. (2010). Chem. Rev. 110, 4606–4655.
- Feng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). *Chem. Commun.* 45, 5296–5298.
- Lin, J. B., Zhang, J. P. & Chen, X. M. (2010). J. Am. Chem. Soc. **132**, 6654–6656. Ma, Y., Cheng, A. L. & Gao, E. Q. (2010). Cryst. Growth Des. **10**, 2832–2834.
- Sarma, R., Deka, H., Boudalis, A. K. & Baruah, J. B. (2011). *Cryst. Growth Des.* **11**, 547–554.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m650-m651 [doi:10.1107/S1600536812016819]

catena-Poly[[[aqua(1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II)]-{ μ -4,4'-[(4-carb-oxybenzyl)nitrilo]dibenzoato- $\kappa^4 O, O': O'', O'''$ }] monohydrate]

Jin-Song Hu, Lei Jing, Xiao-Ming Song and Jie He

Comment

The construction of compounds with metal-organic framework structures (MOFs) from various molecular building blocks connected by coordination bonds or supramolecular contacts have been of intense interest due to their structures and topological features (Ma *et al.*, 2010), as well as their promising applications in photochemistry areas (Feng *et al.*, 2009), molecular magnetism (Sarma *et al.*, 2011), heterogeneous catalysis (Corma *et al.*, 2010), and molecular sorption (Lin *et al.*, 2010). We recently designed and synthesized (4-carboxybenzyl)-4,4'-nitrilodibenzoic acid (H₃L), a tripod carboxylate ligand. To test the ability of this ligand to give new architectures and topologies, we selected this ligand, 1,10-phenanthroline (phen), and an Mn^{II} salt to solvothermally synthesize the new coordination polymer [Mn(HL)(phen) (H₂O)]⁻H₂O or [Mn(C₂₂H₁₅NO₆)(C₁₂H₈N₂)(H₂O]⁻H₂O.

The asymmetric unit of the title compound contains one Mn^{II} ion, one HL^{2-} anion, one phen ligand and one lattice water molecule (Fig. 1) The cation displays a distorted MnN_2O_5 coordination sphere that can be best described as pentagonalbipyramidal. As shown in Figure 1, the Mn^{II} cation is coordinated by two pairs of chelating carboxylate O atoms from two HL^{2-} ligands, one coordinating water, and two N atoms from one phen ligand. The Mn—N bond lengths are 2.258 (3) and 2.274 (3) Å, and the Mn—O lengths are in the range of 2.198 (2)–2.461 (3) Å. The dihedral angles between the three phenyl rings in the anion are 70.16 (18)°, 83.39 (19)° and 77.4 (12)°.

Neighboring Mn^{II} ions are linked by bridging HL^{2-} anions to form a polymeric zigzag chain parallel to [100]. The distance between adjacent Mn^{II} cation withion the chain is 15.142 (1) Å (Figure 2). O—H···O hydrogen bonding between the carboxy group and the coordinating and free water molecules as donors and carboxylate O atoms and water O atoms as acceptors (Table 2) as well as π — π interactions between neighbouring phen groups with centroid-to-centroid distances of 3.695 (1) Å stabilize the three-dimensional set-up of the structure (Figure 3).

Experimental

A mixture of $MnCl_2 4H_2O(10 \text{ mg})$, H3L(20 mg) and phen (10 mg) was dissolved in 9 ml of DMF/H2O(1:2, v/v). The final mixture was placed in a Parr Teflon-lined stainless steel vessel (15 ml) under autogenous pressure and heated at 363 K for 3 d. A large quantity of colorless crystals were obtained, which were washed with mother liquid, and dried under ambient conditions (yield: 71% based on phen).

Refinement

The water H-atoms were located from a Fourier differnce map and were refined with distance restraintes of O—H = 0.85 (2) Å, and H—H distance of 1.45 (2) Å with $U_{iso}(H) = 1.5Ueq(O)$. The C-bound H-atoms were placed in geometrically idealized positions and treated as riding: C—H = 0.93 and 0.96 Å for CH and CH₂ H-atoms, respectively, with $U_{iso}(H) = k \tau imes U_{eq}(C)$, where k = 1.5 for CH₂ H-atoms, and k = 1.2 for all other H-atoms. The O atom of the

solvent water molecule was refined with an isotropic displacement parameter.

Computing details

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound, showing the coordination of the Mn^{II} cation. Displacement ellipsoids are drawn at the 20% probability level. [Symmetry codes: (#1) 1 + x, y, z.]

Figure 2

A view of the polymeric zigzag chain expanding parallel to [100]; the phen ligands are arranged in parallel fashion.

Figure 3

A view of the three-dimensional network formed by O–H..O hydrogen bonding (green dotted lines) and π --- π interactions (purple dotted lines).

catena-Poly[[[aqua(1,10-phenanthroline- $\kappa^2 N, N'$)manganese(II)]-{ μ -4,4'-[(4- carboxybenzyl)nitrilo]dibenzoato*κ*⁴*O*,*O*':*O*'',*O*'''}] monohydrate]

 $l = -25 \rightarrow 15$

Crystal data	
$[Mn(C_{22}H_{15}NO_6)(C_{12}H_8N_2)(H_2O] \cdot H_2O]$	F(000) = 1364
$M_r = 660.53$	$D_{\rm x} = 1.473 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2883 reflections
a = 15.142 (2) Å	$\theta = 2.3 - 27.9^{\circ}$
b = 9.6734 (13) Å	$\mu=0.50~\mathrm{mm^{-1}}$
c = 21.313 (3) Å	T = 273 K
$\beta = 107.445 \ (3)^{\circ}$	Block, colorless
V = 2978.4 (7) Å ³	$0.32 \times 0.27 \times 0.23 \text{ mm}$
Z = 4	
Data collection	
Bruker APEX SMART CCD	14335 measured reflections
diffractometer	5235 independent reflections
Radiation source: fine-focus sealed tube	3488 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.102$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
Absorption correction: multi-scan	$h = -18 \rightarrow 17$
(SADABS; Bruker, 2000)	$k = -11 \rightarrow 11$

 $T_{\rm min} = 0.851, T_{\rm max} = 0.891$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from
$wR(F^2) = 0.156$	neighbouring sites
S = 0.95	H-atom parameters constrained
5235 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0787P)^2]$
410 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3740 (2)	0.7528 (3)	0.29214 (19)	0.0385 (8)
C2	0.2736 (2)	0.7716 (3)	0.25997 (18)	0.0412 (8)
C3	0.2389 (3)	0.7855 (4)	0.1934 (2)	0.0543 (10)
Н3	0.2792	0.7920	0.1681	0.065*
C4	0.1436 (3)	0.7902 (4)	0.1629 (2)	0.0606 (11)
H4	0.1210	0.7955	0.1173	0.073*
C5	0.0817 (2)	0.7869 (4)	0.2000 (2)	0.0528 (10)
C6	0.1170 (2)	0.7801 (4)	0.2663 (2)	0.0531 (10)
H6	0.0773	0.7823	0.2922	0.064*
C7	0.2110 (2)	0.7702 (3)	0.2959 (2)	0.0478 (9)
H7	0.2332	0.7622	0.3415	0.057*
C8	-0.0824 (3)	0.7829 (4)	0.2049 (2)	0.0564 (10)
C9	-0.1346 (3)	0.8984 (4)	0.2073 (2)	0.0589 (11)
H9	-0.1226	0.9813	0.1893	0.071*
C10	-0.2044 (3)	0.8919 (4)	0.2363 (2)	0.0524 (10)
H10	-0.2394	0.9702	0.2375	0.063*
C11	-0.2229 (2)	0.7697 (3)	0.26370 (17)	0.0415 (8)
C12	-0.3046 (3)	0.7581 (4)	0.28836 (19)	0.0469 (9)
C13	-0.1686 (2)	0.6567 (4)	0.2626 (2)	0.0511 (10)
H13	-0.1787	0.5747	0.2822	0.061*
C14	-0.0992 (3)	0.6628 (4)	0.2329 (2)	0.0609 (11)
H14	-0.0639	0.5847	0.2319	0.073*
C15	-0.0547 (3)	0.7657 (4)	0.1000 (2)	0.0675 (12)
H15A	-0.0172	0.8111	0.0764	0.081*
H15B	-0.1161	0.8062	0.0855	0.081*
C16	-0.0618 (3)	0.6100 (4)	0.0825 (2)	0.0592 (11)

C17	-0.1327 (3)	0.5656 (5)	0.0317 (3)	0.0939 (17)
H17	-0.1743	0.6293	0.0064	0.113*
C18	-0.1442 (3)	0.4278 (5)	0.0170 (3)	0.099 (2)
H18	-0.1964	0.3987	-0.0160	0.119*
C19	-0.0806 (3)	0.3322 (4)	0.0497 (2)	0.0566 (10)
C20	-0.0882(3)	0.1837 (5)	0.0329 (2)	0.0652 (12)
C21	-0.0069 (3)	0.3772 (5)	0.0987 (2)	0.0753 (13)
H21	0.0383	0.3148	0.1211	0.090*
C22	0.0016 (3)	0.5167 (4)	0.1156 (2)	0.0707 (13)
H22	0.0517	0.5462	0.1502	0.085*
C23	0.5734 (3)	1.0407 (4)	0.3660 (2)	0.0578 (10)
H23	0.5594	1.0478	0.3205	0.069*
C24	0.5840 (3)	1.1605 (4)	0.4018 (3)	0.0762 (14)
H24	0.5780	1.2461	0.3810	0.091*
C25	0.6034 (4)	1.1522 (4)	0.4681 (3)	0.0815 (15)
H25	0.6106	1.2325	0.4931	0.098*
C26	0.6127 (3)	1.0233 (4)	0.4988 (2)	0.0615 (11)
C27	0.6320 (3)	1.0064 (5)	0.5675 (2)	0.0796 (14)
H27	0.6385	1.0839	0.5943	0.096*
C28	0.6411 (3)	0.8794 (5)	0.5946 (2)	0.0787 (14)
H28	0.6543	0.8709	0.6399	0.094*
C29	0.6310 (3)	0.7583 (4)	0.55564 (19)	0.0551 (10)
C30	0.6373 (3)	0.6263 (5)	0.5807 (2)	0.0684 (12)
H30	0.6486	0.6131	0.6256	0.082*
C31	0.6274 (4)	0.5170 (5)	0.5410(2)	0.0806 (15)
H31	0.6317	0.4276	0.5577	0.097*
C32	0.6105 (3)	0.5400 (4)	0.4740 (2)	0.0673 (12)
H32	0.6062	0.4634	0.4469	0.081*
C33	0.6116 (2)	0.7712 (4)	0.48698 (16)	0.0406 (8)
C34	0.6021 (2)	0.9068 (3)	0.45838 (18)	0.0439 (9)
Mn1	0.55471 (3)	0.71229 (5)	0.33754 (2)	0.03684 (19)
N1	0.58186 (19)	0.9152 (3)	0.39227 (14)	0.0423 (7)
N2	0.60042 (19)	0.6619 (3)	0.44679 (14)	0.0415 (7)
N3	-0.0154 (2)	0.7910 (4)	0.16835 (18)	0.0635 (9)
01	0.43035 (16)	0.7798 (2)	0.26018 (12)	0.0466 (6)
02	0.40297 (16)	0.7085 (2)	0.34972 (13)	0.0504 (6)
03	-0.37284 (18)	0.8342 (3)	0.26431 (14)	0.0684 (8)
O4	-0.30488 (16)	0.6694 (3)	0.33120 (14)	0.0535 (7)
08	0.8366 (2)	0.9035 (3)	0.94467 (16)	0.0802 (9)*
H8A	0.7988	0.8752	0.9089	0.096*
H8B	0.8773	0.8417	0.9599	0.120*
09	0.52533 (15)	0.4896 (2)	0.31171 (12)	0.0470 (6)
H9B	0.5622	0.4606	0.2914	0.056*
H9A	0.4717	0.4808	0.2883	0.070*
011	-0.0275 (3)	0.1014 (3)	0.0524 (2)	0.1007 (13)
O12	-0.1701 (2)	0.1488 (3)	-0.00651 (18)	0.0895 (11)
H12	-0.1699	0.0666	-0.0158	0.134*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U ¹²	<i>U</i> ¹³	<i>U</i> ²³
C1	0.041 (2)	0.0294 (17)	0.047 (2)	-0.0021 (14)	0.0158 (18)	-0.0031 (16)
C2	0.041 (2)	0.0359 (19)	0.046 (2)	-0.0024 (15)	0.0128 (18)	-0.0018 (17)
C3	0.053 (2)	0.067 (3)	0.046 (2)	-0.002 (2)	0.018 (2)	-0.001 (2)
C4	0.057 (3)	0.078 (3)	0.040 (2)	0.001 (2)	0.003 (2)	0.001 (2)
C5	0.039 (2)	0.054 (2)	0.066 (3)	-0.0064 (18)	0.018 (2)	0.000 (2)
C6	0.043 (2)	0.059 (2)	0.060 (3)	-0.0049 (18)	0.019 (2)	0.003 (2)
C7	0.043 (2)	0.049 (2)	0.054 (2)	-0.0046 (17)	0.0185 (19)	0.0010 (18)
C8	0.059 (2)	0.056 (2)	0.067 (3)	0.003 (2)	0.040 (2)	0.000 (2)
C9	0.069 (3)	0.051 (2)	0.067 (3)	-0.001 (2)	0.035 (2)	0.009(2)
C10	0.054 (2)	0.046 (2)	0.061 (3)	0.0094 (17)	0.023 (2)	-0.0004 (19)
C11	0.042 (2)	0.044 (2)	0.038 (2)	0.0005 (16)	0.0124 (17)	-0.0012 (17)
C12	0.045 (2)	0.054 (2)	0.042 (2)	0.0016 (17)	0.0130 (18)	-0.0084 (19)
C13	0.053 (2)	0.045 (2)	0.063 (3)	0.0002 (18)	0.029 (2)	0.0066 (19)
C14	0.067 (3)	0.047 (2)	0.084 (3)	0.0106 (19)	0.045 (2)	0.007 (2)
C15	0.059 (3)	0.080 (3)	0.063 (3)	-0.001 (2)	0.018 (2)	0.004 (2)
C16	0.063 (3)	0.064 (3)	0.057 (3)	0.003 (2)	0.027 (2)	0.000 (2)
C17	0.068 (3)	0.086 (4)	0.110 (5)	0.004 (3)	0.001 (3)	-0.013 (3)
C18	0.069 (3)	0.077 (4)	0.136 (6)	-0.002(3)	0.007 (3)	-0.036 (3)
C19	0.060 (3)	0.061 (3)	0.055 (3)	-0.011 (2)	0.027 (2)	-0.009(2)
C20	0.065 (3)	0.073 (3)	0.060 (3)	-0.011 (2)	0.022 (2)	-0.016 (2)
C21	0.082 (3)	0.072 (3)	0.064 (3)	-0.001 (2)	0.010 (3)	-0.007 (3)
C22	0.071 (3)	0.069 (3)	0.062 (3)	-0.016 (2)	0.004 (2)	-0.016 (2)
C23	0.075 (3)	0.047 (2)	0.054 (3)	-0.001 (2)	0.024 (2)	0.005 (2)
C24	0.112 (4)	0.037 (2)	0.081 (4)	-0.006 (2)	0.032 (3)	0.001 (2)
C25	0.125 (4)	0.043 (3)	0.073 (4)	-0.006 (3)	0.024 (3)	-0.015 (3)
C26	0.082 (3)	0.055 (3)	0.047 (3)	-0.006 (2)	0.018 (2)	-0.015 (2)
C27	0.110 (4)	0.074 (3)	0.049 (3)	-0.011 (3)	0.015 (3)	-0.027 (3)
C28	0.100 (4)	0.095 (4)	0.033 (2)	-0.006 (3)	0.008 (2)	-0.015 (3)
C29	0.063 (3)	0.065 (3)	0.036 (2)	-0.003 (2)	0.013 (2)	-0.003 (2)
C30	0.086 (3)	0.079 (3)	0.037 (2)	0.001 (3)	0.015 (2)	0.015 (2)
C31	0.125 (4)	0.061 (3)	0.051 (3)	0.001 (3)	0.019 (3)	0.020 (2)
C32	0.112 (4)	0.045 (2)	0.044 (3)	0.003 (2)	0.022 (2)	0.001 (2)
C33	0.042 (2)	0.050 (2)	0.0301 (19)	-0.0005 (16)	0.0098 (16)	-0.0036 (17)
C34	0.049 (2)	0.044 (2)	0.037 (2)	-0.0039 (16)	0.0098 (18)	-0.0060 (17)
Mn1	0.0429 (3)	0.0387 (3)	0.0309 (3)	0.0016 (2)	0.0141 (2)	-0.0008(2)
N1	0.0543 (18)	0.0370 (16)	0.0385 (18)	-0.0025 (13)	0.0183 (15)	0.0005 (13)
N2	0.0516 (18)	0.0366 (16)	0.0367 (17)	0.0020 (13)	0.0141 (14)	0.0019 (14)
N3	0.054 (2)	0.083 (3)	0.060 (2)	-0.0020 (18)	0.0272 (18)	0.0002 (19)
01	0.0400 (14)	0.0557 (15)	0.0485 (15)	0.0001 (11)	0.0202 (12)	0.0087 (12)
O2	0.0480 (15)	0.0593 (16)	0.0463 (17)	0.0040 (12)	0.0176 (13)	0.0083 (13)
O3	0.0496 (17)	0.101 (2)	0.0576 (19)	0.0240 (15)	0.0211 (14)	0.0105 (17)
O4	0.0480 (15)	0.0631 (16)	0.0564 (17)	0.0011 (12)	0.0260 (13)	0.0070 (14)
O9	0.0466 (14)	0.0496 (14)	0.0474 (15)	-0.0012 (11)	0.0180 (12)	-0.0133 (12)
O11	0.094 (3)	0.069 (2)	0.120 (3)	0.0039 (19)	0.002 (2)	-0.022 (2)
O12	0.081 (2)	0.076 (2)	0.105 (3)	-0.0160 (17)	0.018 (2)	-0.027(2)

Geometric parameters (Å, °)

C1—O2	1.249 (4)	C21—C22	1.394 (5)
C101	1.268 (4)	C21—H21	0.9300
C1—C2	1.480 (5)	C22—H22	0.9300
С2—С3	1.363 (5)	C23—N1	1.327 (4)
C2—C7	1.387 (5)	C23—C24	1.370 (6)
C3—C4	1.395 (5)	C23—H23	0.9300
С3—Н3	0.9300	C24—C25	1.357 (6)
C4—C5	1.397 (6)	C24—H24	0.9300
C4—H4	0.9300	C25—C26	1.396 (6)
С5—С6	1.354 (6)	C25—H25	0.9300
C5—N3	1.423 (5)	C26—C34	1.398 (5)
C6—C7	1.376 (5)	C26—C27	1.413 (6)
С6—Н6	0.9300	C27—C28	1.347 (6)
С7—Н7	0.9300	C27—H27	0.9300
C8—C14	1.364 (5)	C28—C29	1.417 (6)
C8—C9	1.380 (5)	C28—H28	0.9300
C8—N3	1.454 (5)	C29—C30	1.377 (6)
C9—C10	1.376 (5)	C29—C33	1.409 (5)
С9—Н9	0.9300	C30—C31	1.334 (6)
C10-C11	1.384 (5)	C30—H30	0.9300
C10—H10	0.9300	C31—C32	1.390 (6)
C11—C13	1.372 (5)	C31—H31	0.9300
C11—C12	1.486 (5)	C32—N2	1.302 (4)
C12—O3	1.247 (4)	C32—H32	0.9300
C12—O4	1.254 (4)	C33—N2	1.340 (4)
C13—C14	1.381 (5)	C33—C34	1.436 (5)
С13—Н13	0.9300	C34—N1	1.352 (4)
C14—H14	0.9300	Mn1—O1	2.198 (2)
C15—N3	1.420 (5)	Mn1—O4 ⁱ	2.210 (2)
C15—C16	1.548 (6)	Mn1—09	2.235 (2)
C15—H15A	0.9700	Mn1—N1	2.258 (3)
C15—H15B	0.9700	Mn1—N2	2.274 (3)
C16—C17	1.346 (6)	Mn1—O2	2.389 (2)
C16—C22	1.352 (5)	Mn1—O3 ⁱ	2.461 (3)
C17—C18	1.368 (6)	O3—Mn1 ⁱⁱ	2.461 (3)
С17—Н17	0.9300	O4—Mn1 ⁱⁱ	2.210 (2)
C18—C19	1.367 (6)	O8—H8A	0.8501
C18—H18	0.9300	O8—H8B	0.8500
C19—C21	1.351 (5)	O9—H9B	0.8501
C19—C20	1.477 (6)	O9—H9A	0.8200
C20—O11	1.193 (5)	O12—H12	0.8199
C20—O12	1.316 (5)		
02—C1—O1	120.3 (3)	C25—C24—C23	118.8 (4)
O2—C1—C2	120.4 (3)	C25—C24—H24	120.6
O1—C1—C2	119.2 (3)	C23—C24—H24	120.6
C3—C2—C7	117.5 (3)	C24—C25—C26	120.1 (4)
C3—C2—C1	121.1 (4)	C24—C25—H25	119.9

C7—C2—C1	121.4 (3)	С26—С25—Н25	119.9
C2—C3—C4	120.7 (4)	C25—C26—C34	117.0 (4)
С2—С3—Н3	119.6	C25—C26—C27	123.3 (4)
С4—С3—Н3	119.6	C34—C26—C27	119.7 (4)
C3—C4—C5	120.7 (4)	C28—C27—C26	120.8 (4)
C3—C4—H4	119.6	C28—C27—H27	119.6
C5—C4—H4	119.6	С26—С27—Н27	119.6
C6—C5—C4	118.1 (3)	C27—C28—C29	121.6 (4)
C6—C5—N3	121.7 (4)	С27—С28—Н28	119.2
C4—C5—N3	120.2 (4)	С29—С28—Н28	119.2
C5—C6—C7	120.8 (4)	C30—C29—C33	117.0 (4)
С5—С6—Н6	119.6	C30—C29—C28	123.8 (4)
С7—С6—Н6	119.6	C33—C29—C28	119.2 (4)
C6—C7—C2	122.0 (4)	C31—C30—C29	120.5 (4)
С6—С7—Н7	119.0	С31—С30—Н30	119.7
C2—C7—H7	119.0	С29—С30—Н30	119.7
C14—C8—C9	119.2 (4)	C_{30} $-C_{31}$ $-C_{32}$	118.4 (4)
C14—C8—N3	122.2 (4)	C30—C31—H31	120.8
C9-C8-N3	1184(4)	C32—C31—H31	120.8
C10-C9-C8	1204(4)	$N_2 - C_3^2 - C_3^2$	120.0
C10 - C9 - H9	119.8	$N_2 = C_{32} = H_{32}$	117.9
C8-C9-H9	119.8	$C_{31} = C_{32} = H_{32}$	117.9
C9-C10-C11	120.6 (3)	$N_2 - C_{33} - C_{29}$	122.8 (3)
C9-C10-H10	119.7	$N_2 = C_{33} = C_{34}$	122.0(3)
$C_{11} - C_{10} - H_{10}$	119.7	C_{29} C_{33} C_{34}	110.2(3)
C_{13} C_{11} C_{10}	119.7	N1 - C34 - C26	117.0(3)
C_{13} C_{11} C_{12}	120.8(3)	N1 - C34 - C33	122.9(3) 117.4(3)
$C_{10} = C_{11} = C_{12}$	120.6(3)	$C_{26} C_{34} C_{33}$	117.4(3) 110.7(3)
$C_{10} = C_{11} = C_{12}$	120.0(3) 121.3(4)	$01 - Mn1 - O4^{i}$	119.7(3) 129.32(10)
03 - C12 - C11	121.3(4) 1100(4)	O1 Mn1 O9	127.32(10)
03-012-011	119.0(4)	$O_1 = Mn_1 = O_2$	92.24(9)
$C_{11} = C_{12} = C_{11}$	119.0(3) 1211(3)	O1 Mn1 N1	95.88(9)
$C_{11} = C_{13} = C_{14}$	121.1 (5)	$O_1 = Mn_1 = N_1$ $O_1^i = Mn_1 = N_1$	90.41(10)
C14 C13 H13	119.5	O4 - Mn1 - N1	99.32(10)
$C_{14}^{0} - C_{13}^{0} - H_{13}^{0}$	119.5	O_{2} Mill N_{1}	103.23(10) 120.57(10)
$C_{0} = C_{14} = C_{13}$	120.5 (4)	$O_1 = M_{11} = N_2$	139.37(10)
C_{0}	119.8	04 Mini $N2$	91.11(10)
C13-C14-H14	119.8	09—Min1—N2	91.28 (9)
N3 - C15 - C16	113.1 (4)	N1 - Mn1 - N2	72.85 (10)
N3-C15-H15A	109.0	OI - MnI - O2	56.65 (9) 1 (8.02 (0)
CI6—CI5—HI5A	109.0	04 Min1 -02	168.03 (9)
N3—CI5—HI5B	109.0	09—Mn1—02	83.40 (8)
С16—С15—Н15В	109.0	NI-MnI-O2	89.38 (9)
HISA—CIS—HISB	10/.8	N2—Mn1—O2	83.85 (9)
C1/-C16-C22	118.5 (4)	$O1$ — $Mn1$ — $O3^{\circ}$	80.00 (9)
C1/-C16-C15	119.0 (4)	$U4^{-}Mn1 - U3^{+}$	55. <i>33</i> (9)
U22-U16-U15	122.4 (4)	$\frac{1}{10000000000000000000000000000000000$	113.53 (10)
C10 - C1 / - C18	120.8 (5)	$N1 - MI1 - O3^{\dagger}$	82.21 (10)
C16-C17-H17	119.6	N_2 —Mn1— O_3^{+}	134.06 (10)
C18—C17—H17	119.6	$O2-Mn1-O3^{1}$	134.63 (9)

C19—C18—C17	121 4 (5)	C23—N1—C34	117 3 (3)
C19—C18—H18	1193	C_{23} N1—Mn1	1267(3)
C17—C18—H18	119.3	C34—N1—Mn1	115.8 (2)
C21—C19—C18	117.9 (4)	C32—N2—C33	117.0 (3)
C21—C19—C20	119.2 (4)	C32—N2—Mn1	127.5 (3)
C18—C19—C20	122.9 (4)	C33—N2—Mn1	115.3 (2)
O11—C20—O12	122.1 (4)	C15—N3—C5	122.5 (4)
O11—C20—C19	124.7 (4)	C15—N3—C8	113.3 (3)
O12—C20—C19	113.2 (4)	C5—N3—C8	122.1 (4)
C19—C21—C22	120.2 (4)	C1—O1—Mn1	95.7 (2)
C19—C21—H21	119.9	C1—O2—Mn1	87.3 (2)
C22—C21—H21	119.9	C12—O3—Mn1 ⁱⁱ	85.9 (2)
C16—C22—C21	121.0 (4)	C12—O4—Mn1 ⁱⁱ	97.4 (2)
C16—C22—H22	119.5	H8A—O8—H8B	109.5
C21—C22—H22	119.5	Mn1—O9—H9B	109.3
N1-C23-C24	123.9 (4)	Mn1—O9—H9A	109.8
N1—C23—H23	118.0	Н9В—О9—Н9А	109.8
C24—C23—H23	118.0	C20—O12—H12	109.4

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
O8—H8A····O4 ⁱⁱⁱ	0.85	1.96	2.798 (4)	170
O8—H8 <i>B</i> ···O11 ^{iv}	0.85	2.43	2.872 (5)	113
O9—H9 <i>B</i> ⋯O1 ^v	0.85	2.09	2.745 (3)	134
O9—H9A···O3 ^{vi}	0.82	2.12	2.824 (3)	144
012—H12···08 ^{vii}	0.82	1.81	2.605 (4)	165

Symmetry codes: (iii) x+1, -y+3/2, z+1/2; (iv) -x+1, -y+1, -z+1; (v) -x+1, y-1/2, -z+1/2; (vi) -x, y-1/2, -z+1/2; (vii) x-1, y-1, z-1.